3.7.60 \(\int \frac {\sqrt {a+c x^2}}{(d+e x)^{3/2}} \, dx\) [660]

3.7.60.1 Optimal result
3.7.60.2 Mathematica [C] (verified)
3.7.60.3 Rubi [B] (verified)
3.7.60.4 Maple [A] (verified)
3.7.60.5 Fricas [C] (verification not implemented)
3.7.60.6 Sympy [F]
3.7.60.7 Maxima [F]
3.7.60.8 Giac [F]
3.7.60.9 Mupad [F(-1)]

3.7.60.1 Optimal result

Integrand size = 21, antiderivative size = 305 \[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^{3/2}} \, dx=-\frac {2 \sqrt {a+c x^2}}{e \sqrt {d+e x}}-\frac {4 \sqrt {-a} \sqrt {c} \sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}} E\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{e^2 \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {a+c x^2}}+\frac {4 \sqrt {-a} \sqrt {c} d \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {1+\frac {c x^2}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right ),-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{e^2 \sqrt {d+e x} \sqrt {a+c x^2}} \]

output
-2*(c*x^2+a)^(1/2)/e/(e*x+d)^(1/2)-4*EllipticE(1/2*(1-x*c^(1/2)/(-a)^(1/2) 
)^(1/2)*2^(1/2),(-2*a*e/(-a*e+d*(-a)^(1/2)*c^(1/2)))^(1/2))*(-a)^(1/2)*c^( 
1/2)*(e*x+d)^(1/2)*(1+c*x^2/a)^(1/2)/e^2/(c*x^2+a)^(1/2)/((e*x+d)*c^(1/2)/ 
(e*(-a)^(1/2)+d*c^(1/2)))^(1/2)+4*d*EllipticF(1/2*(1-x*c^(1/2)/(-a)^(1/2)) 
^(1/2)*2^(1/2),(-2*a*e/(-a*e+d*(-a)^(1/2)*c^(1/2)))^(1/2))*(-a)^(1/2)*c^(1 
/2)*(1+c*x^2/a)^(1/2)*((e*x+d)*c^(1/2)/(e*(-a)^(1/2)+d*c^(1/2)))^(1/2)/e^2 
/(e*x+d)^(1/2)/(c*x^2+a)^(1/2)
 
3.7.60.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 22.45 (sec) , antiderivative size = 419, normalized size of antiderivative = 1.37 \[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^{3/2}} \, dx=\frac {2 \left (e^2 \left (a+c x^2\right )+\frac {2 \sqrt {c} \left (-i \sqrt {c} d+\sqrt {a} e\right ) \sqrt {\frac {e \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{d+e x}} \sqrt {-\frac {\frac {i \sqrt {a} e}{\sqrt {c}}-e x}{d+e x}} (d+e x)^{3/2} E\left (i \text {arcsinh}\left (\frac {\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}{\sqrt {d+e x}}\right )|\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )}{\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}-\frac {2 \sqrt {a} \sqrt {c} e \sqrt {\frac {e \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{d+e x}} \sqrt {-\frac {\frac {i \sqrt {a} e}{\sqrt {c}}-e x}{d+e x}} (d+e x)^{3/2} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}{\sqrt {d+e x}}\right ),\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )}{\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}\right )}{e^3 \sqrt {d+e x} \sqrt {a+c x^2}} \]

input
Integrate[Sqrt[a + c*x^2]/(d + e*x)^(3/2),x]
 
output
(2*(e^2*(a + c*x^2) + (2*Sqrt[c]*((-I)*Sqrt[c]*d + Sqrt[a]*e)*Sqrt[(e*((I* 
Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d 
+ e*x))]*(d + e*x)^(3/2)*EllipticE[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[ 
c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)])/ 
Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]] - (2*Sqrt[a]*Sqrt[c]*e*Sqrt[(e*((I*Sqrt[a 
])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x) 
)]*(d + e*x)^(3/2)*EllipticF[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sq 
rt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)])/Sqrt[- 
d - (I*Sqrt[a]*e)/Sqrt[c]]))/(e^3*Sqrt[d + e*x]*Sqrt[a + c*x^2])
 
3.7.60.3 Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(633\) vs. \(2(305)=610\).

Time = 0.64 (sec) , antiderivative size = 633, normalized size of antiderivative = 2.08, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {492, 599, 1511, 1416, 1509}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+c x^2}}{(d+e x)^{3/2}} \, dx\)

\(\Big \downarrow \) 492

\(\displaystyle \frac {2 c \int \frac {x}{\sqrt {d+e x} \sqrt {c x^2+a}}dx}{e}-\frac {2 \sqrt {a+c x^2}}{e \sqrt {d+e x}}\)

\(\Big \downarrow \) 599

\(\displaystyle -\frac {4 c \int -\frac {e x}{\sqrt {\frac {c d^2}{e^2}-\frac {2 c (d+e x) d}{e^2}+\frac {c (d+e x)^2}{e^2}+a}}d\sqrt {d+e x}}{e^3}-\frac {2 \sqrt {a+c x^2}}{e \sqrt {d+e x}}\)

\(\Big \downarrow \) 1511

\(\displaystyle -\frac {4 c \left (\left (d-\frac {\sqrt {a e^2+c d^2}}{\sqrt {c}}\right ) \int \frac {1}{\sqrt {\frac {c d^2}{e^2}-\frac {2 c (d+e x) d}{e^2}+\frac {c (d+e x)^2}{e^2}+a}}d\sqrt {d+e x}+\frac {\sqrt {a e^2+c d^2} \int \frac {1-\frac {\sqrt {c} (d+e x)}{\sqrt {c d^2+a e^2}}}{\sqrt {\frac {c d^2}{e^2}-\frac {2 c (d+e x) d}{e^2}+\frac {c (d+e x)^2}{e^2}+a}}d\sqrt {d+e x}}{\sqrt {c}}\right )}{e^3}-\frac {2 \sqrt {a+c x^2}}{e \sqrt {d+e x}}\)

\(\Big \downarrow \) 1416

\(\displaystyle -\frac {4 c \left (\frac {\sqrt {a e^2+c d^2} \int \frac {1-\frac {\sqrt {c} (d+e x)}{\sqrt {c d^2+a e^2}}}{\sqrt {\frac {c d^2}{e^2}-\frac {2 c (d+e x) d}{e^2}+\frac {c (d+e x)^2}{e^2}+a}}d\sqrt {d+e x}}{\sqrt {c}}+\frac {\sqrt [4]{a e^2+c d^2} \left (d-\frac {\sqrt {a e^2+c d^2}}{\sqrt {c}}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right ) \sqrt {\frac {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}{\left (a+\frac {c d^2}{e^2}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {d+e x}}{\sqrt [4]{c d^2+a e^2}}\right ),\frac {1}{2} \left (\frac {\sqrt {c} d}{\sqrt {c d^2+a e^2}}+1\right )\right )}{2 \sqrt [4]{c} \sqrt {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}}\right )}{e^3}-\frac {2 \sqrt {a+c x^2}}{e \sqrt {d+e x}}\)

\(\Big \downarrow \) 1509

\(\displaystyle -\frac {4 c \left (\frac {\sqrt [4]{a e^2+c d^2} \left (d-\frac {\sqrt {a e^2+c d^2}}{\sqrt {c}}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right ) \sqrt {\frac {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}{\left (a+\frac {c d^2}{e^2}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {d+e x}}{\sqrt [4]{c d^2+a e^2}}\right ),\frac {1}{2} \left (\frac {\sqrt {c} d}{\sqrt {c d^2+a e^2}}+1\right )\right )}{2 \sqrt [4]{c} \sqrt {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}}+\frac {\sqrt {a e^2+c d^2} \left (\frac {\sqrt [4]{a e^2+c d^2} \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right ) \sqrt {\frac {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}{\left (a+\frac {c d^2}{e^2}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {d+e x}}{\sqrt [4]{c d^2+a e^2}}\right )|\frac {1}{2} \left (\frac {\sqrt {c} d}{\sqrt {c d^2+a e^2}}+1\right )\right )}{\sqrt [4]{c} \sqrt {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}}-\frac {\sqrt {d+e x} \sqrt {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}}{\left (a+\frac {c d^2}{e^2}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right )}\right )}{\sqrt {c}}\right )}{e^3}-\frac {2 \sqrt {a+c x^2}}{e \sqrt {d+e x}}\)

input
Int[Sqrt[a + c*x^2]/(d + e*x)^(3/2),x]
 
output
(-2*Sqrt[a + c*x^2])/(e*Sqrt[d + e*x]) - (4*c*((Sqrt[c*d^2 + a*e^2]*(-((Sq 
rt[d + e*x]*Sqrt[a + (c*d^2)/e^2 - (2*c*d*(d + e*x))/e^2 + (c*(d + e*x)^2) 
/e^2])/((a + (c*d^2)/e^2)*(1 + (Sqrt[c]*(d + e*x))/Sqrt[c*d^2 + a*e^2]))) 
+ ((c*d^2 + a*e^2)^(1/4)*(1 + (Sqrt[c]*(d + e*x))/Sqrt[c*d^2 + a*e^2])*Sqr 
t[(a + (c*d^2)/e^2 - (2*c*d*(d + e*x))/e^2 + (c*(d + e*x)^2)/e^2)/((a + (c 
*d^2)/e^2)*(1 + (Sqrt[c]*(d + e*x))/Sqrt[c*d^2 + a*e^2])^2)]*EllipticE[2*A 
rcTan[(c^(1/4)*Sqrt[d + e*x])/(c*d^2 + a*e^2)^(1/4)], (1 + (Sqrt[c]*d)/Sqr 
t[c*d^2 + a*e^2])/2])/(c^(1/4)*Sqrt[a + (c*d^2)/e^2 - (2*c*d*(d + e*x))/e^ 
2 + (c*(d + e*x)^2)/e^2])))/Sqrt[c] + ((c*d^2 + a*e^2)^(1/4)*(d - Sqrt[c*d 
^2 + a*e^2]/Sqrt[c])*(1 + (Sqrt[c]*(d + e*x))/Sqrt[c*d^2 + a*e^2])*Sqrt[(a 
 + (c*d^2)/e^2 - (2*c*d*(d + e*x))/e^2 + (c*(d + e*x)^2)/e^2)/((a + (c*d^2 
)/e^2)*(1 + (Sqrt[c]*(d + e*x))/Sqrt[c*d^2 + a*e^2])^2)]*EllipticF[2*ArcTa 
n[(c^(1/4)*Sqrt[d + e*x])/(c*d^2 + a*e^2)^(1/4)], (1 + (Sqrt[c]*d)/Sqrt[c* 
d^2 + a*e^2])/2])/(2*c^(1/4)*Sqrt[a + (c*d^2)/e^2 - (2*c*d*(d + e*x))/e^2 
+ (c*(d + e*x)^2)/e^2])))/e^3
 

3.7.60.3.1 Defintions of rubi rules used

rule 492
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[ 
(c + d*x)^(n + 1)*((a + b*x^2)^p/(d*(n + 1))), x] - Simp[2*b*(p/(d*(n + 1)) 
)   Int[x*(c + d*x)^(n + 1)*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, 
d, n}, x] && GtQ[p, 0] && (IntegerQ[p] || LtQ[n, -1]) && NeQ[n, -1] &&  !IL 
tQ[n + 2*p + 1, 0] && IntQuadraticQ[a, 0, b, c, d, n, p, x]
 

rule 599
Int[((A_.) + (B_.)*(x_))/(Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2] 
), x_Symbol] :> Simp[-2/d^2   Subst[Int[(B*c - A*d - B*x^2)/Sqrt[(b*c^2 + a 
*d^2)/d^2 - 2*b*c*(x^2/d^2) + b*(x^4/d^2)], x], x, Sqrt[c + d*x]], x] /; Fr 
eeQ[{a, b, c, d, A, B}, x] && PosQ[b/a]
 

rule 1416
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c 
/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/ 
(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c)) 
], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
 

rule 1509
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q 
^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2* 
x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2 
/(4*c))], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 
- 4*a*c, 0] && PosQ[c/a]
 

rule 1511
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + b*x^2 + c*x^ 
4], x], x] - Simp[e/q   Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] /; 
NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && Pos 
Q[c/a]
 
3.7.60.4 Maple [A] (verified)

Time = 2.21 (sec) , antiderivative size = 383, normalized size of antiderivative = 1.26

method result size
elliptic \(\frac {\sqrt {\left (e x +d \right ) \left (c \,x^{2}+a \right )}\, \left (-\frac {2 \left (c e \,x^{2}+a e \right )}{e^{2} \sqrt {\left (x +\frac {d}{e}\right ) \left (c e \,x^{2}+a e \right )}}+\frac {4 c \left (\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}}\, \left (\left (-\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) E\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )+\frac {\sqrt {-a c}\, F\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )}{c}\right )}{e \sqrt {c e \,x^{3}+c d \,x^{2}+a e x +a d}}\right )}{\sqrt {e x +d}\, \sqrt {c \,x^{2}+a}}\) \(383\)
default \(\frac {2 \sqrt {c \,x^{2}+a}\, \sqrt {e x +d}\, \left (2 \sqrt {-a c}\, \sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e +c d}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e -c d}}\, F\left (\sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}, \sqrt {-\frac {\sqrt {-a c}\, e -c d}{\sqrt {-a c}\, e +c d}}\right ) d e -2 \sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e +c d}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e -c d}}\, E\left (\sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}, \sqrt {-\frac {\sqrt {-a c}\, e -c d}{\sqrt {-a c}\, e +c d}}\right ) a \,e^{2}-2 \sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e +c d}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e -c d}}\, E\left (\sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}, \sqrt {-\frac {\sqrt {-a c}\, e -c d}{\sqrt {-a c}\, e +c d}}\right ) c \,d^{2}+2 \sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e +c d}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e -c d}}\, F\left (\sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}, \sqrt {-\frac {\sqrt {-a c}\, e -c d}{\sqrt {-a c}\, e +c d}}\right ) a \,e^{2}-c \,x^{2} e^{2}-e^{2} a \right )}{\left (c e \,x^{3}+c d \,x^{2}+a e x +a d \right ) e^{3}}\) \(648\)

input
int((c*x^2+a)^(1/2)/(e*x+d)^(3/2),x,method=_RETURNVERBOSE)
 
output
((e*x+d)*(c*x^2+a))^(1/2)/(e*x+d)^(1/2)/(c*x^2+a)^(1/2)*(-2*(c*e*x^2+a*e)/ 
e^2/((x+d/e)*(c*e*x^2+a*e))^(1/2)+4*c/e*(d/e-(-a*c)^(1/2)/c)*((x+d/e)/(d/e 
-(-a*c)^(1/2)/c))^(1/2)*((x-(-a*c)^(1/2)/c)/(-d/e-(-a*c)^(1/2)/c))^(1/2)*( 
(x+(-a*c)^(1/2)/c)/(-d/e+(-a*c)^(1/2)/c))^(1/2)/(c*e*x^3+c*d*x^2+a*e*x+a*d 
)^(1/2)*((-d/e-(-a*c)^(1/2)/c)*EllipticE(((x+d/e)/(d/e-(-a*c)^(1/2)/c))^(1 
/2),((-d/e+(-a*c)^(1/2)/c)/(-d/e-(-a*c)^(1/2)/c))^(1/2))+(-a*c)^(1/2)/c*El 
lipticF(((x+d/e)/(d/e-(-a*c)^(1/2)/c))^(1/2),((-d/e+(-a*c)^(1/2)/c)/(-d/e- 
(-a*c)^(1/2)/c))^(1/2))))
 
3.7.60.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 216, normalized size of antiderivative = 0.71 \[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^{3/2}} \, dx=-\frac {2 \, {\left (3 \, \sqrt {c x^{2} + a} \sqrt {e x + d} e^{2} + 2 \, {\left (d e x + d^{2}\right )} \sqrt {c e} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )}}{3 \, c e^{2}}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )}}{27 \, c e^{3}}, \frac {3 \, e x + d}{3 \, e}\right ) + 6 \, {\left (e^{2} x + d e\right )} \sqrt {c e} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )}}{3 \, c e^{2}}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )}}{27 \, c e^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )}}{3 \, c e^{2}}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )}}{27 \, c e^{3}}, \frac {3 \, e x + d}{3 \, e}\right )\right )\right )}}{3 \, {\left (e^{4} x + d e^{3}\right )}} \]

input
integrate((c*x^2+a)^(1/2)/(e*x+d)^(3/2),x, algorithm="fricas")
 
output
-2/3*(3*sqrt(c*x^2 + a)*sqrt(e*x + d)*e^2 + 2*(d*e*x + d^2)*sqrt(c*e)*weie 
rstrassPInverse(4/3*(c*d^2 - 3*a*e^2)/(c*e^2), -8/27*(c*d^3 + 9*a*d*e^2)/( 
c*e^3), 1/3*(3*e*x + d)/e) + 6*(e^2*x + d*e)*sqrt(c*e)*weierstrassZeta(4/3 
*(c*d^2 - 3*a*e^2)/(c*e^2), -8/27*(c*d^3 + 9*a*d*e^2)/(c*e^3), weierstrass 
PInverse(4/3*(c*d^2 - 3*a*e^2)/(c*e^2), -8/27*(c*d^3 + 9*a*d*e^2)/(c*e^3), 
 1/3*(3*e*x + d)/e)))/(e^4*x + d*e^3)
 
3.7.60.6 Sympy [F]

\[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^{3/2}} \, dx=\int \frac {\sqrt {a + c x^{2}}}{\left (d + e x\right )^{\frac {3}{2}}}\, dx \]

input
integrate((c*x**2+a)**(1/2)/(e*x+d)**(3/2),x)
 
output
Integral(sqrt(a + c*x**2)/(d + e*x)**(3/2), x)
 
3.7.60.7 Maxima [F]

\[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^{3/2}} \, dx=\int { \frac {\sqrt {c x^{2} + a}}{{\left (e x + d\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((c*x^2+a)^(1/2)/(e*x+d)^(3/2),x, algorithm="maxima")
 
output
integrate(sqrt(c*x^2 + a)/(e*x + d)^(3/2), x)
 
3.7.60.8 Giac [F]

\[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^{3/2}} \, dx=\int { \frac {\sqrt {c x^{2} + a}}{{\left (e x + d\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((c*x^2+a)^(1/2)/(e*x+d)^(3/2),x, algorithm="giac")
 
output
integrate(sqrt(c*x^2 + a)/(e*x + d)^(3/2), x)
 
3.7.60.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^{3/2}} \, dx=\int \frac {\sqrt {c\,x^2+a}}{{\left (d+e\,x\right )}^{3/2}} \,d x \]

input
int((a + c*x^2)^(1/2)/(d + e*x)^(3/2),x)
 
output
int((a + c*x^2)^(1/2)/(d + e*x)^(3/2), x)